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By using the techniques of modem functional analysis, a variety of new concepts 
have been developed and new results proved which extend considerably the new 
calculus on complex Banach spaces developed by Sharma and Rebelo. The 
distinguishing feature of the new calculus is that in this calculus the more general 
concept of additivity replaces that of linearity in the Frechet calculus. It is 
proved that the space of continuous additive maps between two complex Banach 
spaces is the direct sum of the spaces of linear and semilinear maps between the 
two spaces. The Hahn-Banach theorem and the open mapping theorem which in 
their standard versions are valid for continuous linear functionals and functions 
are shown to hold also for the additive case. The concepts of the adjoint of an 
additive map, of a new kind of orthogonal complement of a subset of a Banach 
space, and of a balanced additive map in which the norms of the linear and 
semilinear components are equal are developed. It is then proved that the 
orthogonal complement of the range of an additive map equals the null space of 
its adjoint and if the additive map is a functional on a complex t-filbert space and 
is balanced, then the orthogonal complement of the null space of the functional 
equals the range of the adjoint. A generalization of the inverse function theorem 
is proved by using our version of the open mapping theorem and then used to 
establish the Lagrange multiplier theorem in the new calculus. A number of 
related results are also proved. The applications of the new calculus to physics 
are briefly described. 

1. INTRODUCTION 

The purpose of this paper is to develop further the new calculus on 
complex Banach spaces introduced by Sharma and Rebelo (1975). This 
calculus has been used to obtain a variety of results useful in quantum 
theory by Sharma and Rebelo (1975), Fonte (1979), and Pian and Sharma 
(1980, 1981). 

107 
0020-7748/83/0200-0107503.00/0 �9 1983 Plenum Publishing Corporation 



108 Pian and Sharma 

For optimizing functionals on a real Hilbert space, one can use the 
elegant Frechet calculus, but as Cartan (1971) points out, this calculus 
cannot be used on the space of nonholomorphic functions on complex 
normed spaces and all functionals arising from the inner product on a 
complex Hilbert space are nonholomorphic. On the other hand, the 
mathematically meaningless rule that a function and its complex conjugate 
can be varied independently of each other is known to give the correct result 
consistently and this rule is often used in optimizing funetionals on a 
complex Hilbert space (see, for example, Hirschfelder et al., 1964). Whenever 
a rule, however arbitrary or inconsistent, consistently gives the correct 
answer, it points to an underlying mathematical structure which needs to be 
studied. We believe that the new calculus of Sharma and Rebelo (1975) has 
isolated the mathematical structure which shows how and why the rule 
about varying a function and its complex conjugate independently of each 
other works. Though the new calculus is more complicated than the Frechet 
calculus on normed spaces, it simplifies considerably the task of optimizing 
functionals on a complex Hilbert space and in all the cases which arise in 
quantum theory the new calculus makes it unnecessary either to use the 
theory of nonholomorphic functions which is considerably more com- 
plicated or to use meaningless arbitrary rules. 

The main achievements of the present work are the following: 
1. We achieve some obvious generalizations of results true for continu- 

ous linear maps to continuous additive maps. 
2. We are able to show that the space of continuous additive maps 

between two complex normed spaces is the direct sum of spaces of linear 
and semilinear maps between the two spaces. 

3. We have been able to extend the concept of adjoint to the class of 
continuous additive maps. 

4. We give a new definition of orthogonal complement of a subset of a 
complex Banach space and prove that the orthogonal complement of the 
kernel of a balanced (another new concept introduced in the work) additive 
map equals the range of the adjoint. 

5. We use the open mapping theorem to prove a generalized inverse 
function theorem. 

6. We generalize the Lagrange multiplier theorem to the extrema of the 
moduli of complex functionals. 

As far as we know, our proof of the generalized inverse function 
theorem is a new application of the open mapping theorem and an obvious 
modification gives a new proof of the result for the linear case. 
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2. FORMALITIES 

The following definitions and notations will be used throughout this 
work: 

Notation 2.1. The rational, the real, and the complex fields will be 
denoted by Q, R, and C, respectively. 

Notation 2.2. The letters % and ~ will denote Banach spaces over C. 

Definition 2.1. A map f: % --, ~ is said to be additive if and only if 

f (xl  + x 2 ) :  f(xt)-F f(x2), V X I , X 2 ~  

It should be noted thatf is  additive implies thatf(qx)= qf(x), VqEQ, andf  
is additive and continuous implies that f(rx)= rf(x), VrER. 

Definition 2.2. A map f: % --, ~ is said to be linear (resp. semilinear) if 
and only if ( i ) f  is additive and ( i i ) f (ax)=  af(x) [resp. = fff(x)]. 

Notation 2.3. ~(%,o2J) and S~(%,O2J) will denote the Banach spaces of 
bounded linear and semilinear functions, respectively, from % to ~. When 

=C,  the abbreviation E(%) and SE(%) will be used for E(%,C) and 
SE(%,C), respectively. It should be noted that if ~ i s  a real normed linear 
space and f is any additive continuous function from ~ to another real 
normed linear space ~b, then f is bounded and linear. 

Definition 2.3. A map T: % --, ~ is said to belong to 
~(%,~ if and only if T can be written as 

T=LT+ST 

with LT~E(%,~)  and STESE(%,~) .  It should be observed that 
T~ E ( % , ~ ) ~ S ~ ( % , ~ )  implies that T is additive and bounded. 

Notation 2.4. The notation A(%, ~ )  will be used to denote the Banach 
space of continuous additive functions from % to ~. It is easily verified that 
(i) TE ~ (%, ~ ) ~  T is additive and bounded and (ii) TE ~ (%, ~ ) =  T(0)= 0. 
(It should be noted that for the second property continuity is not necessary 
and additivity is enough.) 

3. SOME BASIC RESULTS 

One of the interesting new findings of this work tells us that d~(%, ~ )  is 
in fact the direct sum of E ( % , ~ )  and S E ( % , ~ )  and this is the subject 
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matter of our first proposition. 

Proposition 3.1. ~ ( % ,  %)=  E(%, %)@S~(%,  %). 

Proof. In view of the remark under Definition 2.3 it is enough to show 
that 

6e(%, %) c e(%, (%,%) 

Let TE ~ ( % , % ) .  Define F: % ~ % by 

F( x )=(  l /2)[T(  x ) -  iT( ix )] 

Clearly F is additive and continuous since T is and 

F(ix) = (1/2)[T(ix) + iT(x)] = iF(x) 

Hence FE ~(%,%) .  Similarly define G: % ~ % by 

G(x)=(1 /2 ) [T(x )+  iT(ix)] 

It is easily verified that G ~  gE(~) ,  ~ )  and that 

T = F + G  

The proof of our proposition, in view of the continuity of T, is now 
complete. �9 

We would remark that the Hamiltonians of quantum mechanics are 
linear but not continuous. In the preceding proposition the requirement of 
continuity can be given up if the vector spaces are over the field of the 
complex rationals or if T in addition to being additive is also linear 
whenever % is regarded as a real Banach space. (The underlying set of a 
complex vector space has the structure of a real vector space with the scalar 
multiplication which is merely the restriction of the original scalar multipli- 
cation to R • %; this concept has been used again in the proof of the next 
proposition). 

The preceding proposition shows that a continuous additive function is 
linear or semilinear or a sum of linear and semilinear functions. It is 
interesting to note that both E (%,%)  and g P ( % , % )  are prelinear in the 
sense of Sharma and Rebelo (1975), but, in general, as is easy to verify, an 
element of ~ ( % , % )  need not be prelinear even though it is a sum of two 
prelinear functions; thus the assertion of Sharma and Rebelo (1975) that the 
prelinear functions constitute a vector space is in error. Our next proposi- 
tion shows that the Hahn-Banach theorem is valid also for semilinear 
functionals. 
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Proposition 3.2. Let ~ be a subspace of the normed space 9C. Let f be 
a bounded semilinear functional on ~ .  Then there is a semilinear func- 
tional F which is an extension of f to all of ~ and is such that 

II F II -- IIf II 

Proof The vectors of ~ form a vector space over • also, we denote this 
vector space by ~.  It is evident that as sets 

~ = ~  

We denote by ~ the subspace of ~ spanned by elements of ~lL. Clearly R e f  
is a real linear functional on e~. For x ~ ~ ,  let 

f ( x )  = R e f ( x )  + Im f ( x )  = ae ir 

then since f is semilinear 

Hence 

f (  eirx ) = a = Re f (  eirx ) 

IIRef II = 11 f II 

Hence by the classical Hahn-Banach  theorem R e f  has an extension G to all 
such that 

II G II = IIRef II --II f II 

As a semilinear functional on o-~, f satisfies 

R e f ( i m ) - - I m f ( m ) ,  V m E g l L  

We use this formula to define the semilinear extension F of f on ~ by 

F ( x )  = G ( x )  + iG( ix)  

Our earlier argument enables us to conclude that 

II FII - - I IG[I  

and there is nothing more to prove. �9 
Here we have an example of a deep theorem on linear functionals 

which has an easy extension to semilinear functionals. Now if we define a 
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norm on C~(~,) by 

VT~ C~(~,), IITII=IILTII+IISTII 

where II LTII is the norm (sup) of the linear functional LT inherited from 
t~ (~,~) and II ST I I is the norm (sup) of the semilinear functional ST inherited 
from Sff(~X), then we can extend the Hahn-Banach theorem to 6~,(~): 
Proposition 3.2 remains valid if we replace "semilinear" by "additive" 
throughout in its statement. 

We now have some further standard results which have even easier 
extension to ff (~,). Since we need them for proving the Lagrange multiplier 
theorem, we state these results and indicate briefly how they are proved. 

Proposition 3.3. (The open mapping theorem). Let T be a continuous 
additive map from a Banach space .,6?(, onto another Banach space ~ The 
T(U) is open whenever U is. 

Proof. In the proof of the classical open mapping theorem (Dunford 
and Schwartz, 1957) only additivity has been used although the theorem is 
stated only for linear functions. Therefore, the same proof applies. �9 

Corollary 3.3.1. Let T~  (.~(~,023) be such that its range ~ . (T)  is a 
closed subspace of ~. Then there is a real number K such that for 
each y E  ~,(T),  there is an x ~ % satisfying 

Tx= y 

and 

[Ixll~ K ll yll 

Proof By the open mapping theorem, the unit ball g in ~ is mapped 
onto a set T($), which therefore contains a ball ~0(8) (centered at the 
origin with radius 8). Let y E  ~ ( T ) ,  then (8y/2[I y II) ~ ~0(8) and therefore 
is the image of x '  with Ilx'll~ < 1. Hence if 

x =211yllx'/8 

then 

T x = y  

and 

[Ixll~(2/8)ll yll 
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Take 

K=2/~  �9 

Corollary 3.3.2. Let f E  ~ (%, o2j ) be invertible, then f -  i E @ (~,  ~ ). 

Proof It is easy to verify that f - i  is additive. Since by the open 
mapping theorem f = ( f - I ) - i  maps open sets to open sets f i is continu- 
ous. �9 

We next prove a property which is peculiar to elements of (~(~,). Every 
nonzero linear or semilinear functional is surjective, This is not so in the 
case of elements of •(%); we now give the necessary and sufficient 
condition that must be satisfied by an element of @ ( ~ )  so that it is 
surjective. 

Proposition 3.4. A necessary and sufficient condition that f E  2 ( ~ , )  is 
surjective is that for some h E ,,%, I Lf(h)l ~lSf(h)l, where Lf and sf denote 
the components o f f  in ~,(%) and S~(~,) ,  respectively. 

Proof We may assume that f ~  0. Let h E ~, be such that 
I Lf(h)l ~lSf(h)l . It is easily verified that the equation in z, zE  C, such that 

f( ho)v~O 

has a solution for every complex number c. The sufficiency is then proved, 
since 

Conversely, suppose 

Choose hoe  % such that 

f ( zh)=c 

ILf(h)l=lS/(h)l, VhE~, 

f(h0)+0 

which implies, in view of our hypothesis, that 

L/(ho) O 
Suppose now that contrary to our proposition f is surjective. Then for every 
c EC,  there exists an x E %, such that 

f ( x )=Lf (x )+Sf (x )=c  
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Since LfE ~(~C) and Lf is not zero, Lf is surjective and there exists a z E C  
such that 

l-f(zho)=tf(x) 

= Lf(x--Zho)=O 

= Sf(x-zho)=O 

= Sf(x)=Sf(zho) 

Hence 

zmf(ho)+ ZSf(ho)=C 

But this equation has a solution for every c if and only if 

I Lf( ho )l =/= l Sf( ho )l 

The contradiction proves the proposition. 

4. THE ADJOINT 

Definition 4.1. Let 

T =LT + STE ~( aY,~, ~ )@S~( %, Q )=(~( %, ~ ) 

The adjoint T* of T is defined to be the map from (~(Q) to ~ ( % )  which 
takes 

g=Lg+Sg to LgLT+SgST+SgLT+LgST 

(We observe that gT= T*g.) 

Definition 4.2. Let a)Fr be a subset of a Banach space %. The orthogonal 
complement of ~ denoted by • 6'31L is defined to consist of all f E  C(%)  
such that 

f ( m ) = O ,  V m e %  

The adjoint plays a crucial role in the theory of Lagrange multipliers. 
We had to construct a definition of the adjoint for functions belonging to 
~ ( % ,  ~).  It will be seen that adjoints of such functions have a much more 
complicated structure. 
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[Note that the orthogonal complement of ~ is a closed subspace of ~(%)  
and ~(%) contains the dual of %.] 

Notation 4.1. In what follows, the range of a function T will be denoted 
by ~ and its kernel by a3L(T). 

We have now some propositions on the properties of adjoints. 

Proposition 4.1. Let T~ ~(%, ~). Then J- [~(T)]  = ~(T*). 

Proof The proof is elementary and similar to the linear case. �9 

Proposition 4.2. Let 96 and ~ be Banach spaces over the complex field. 
Let T~ ~(%, ~)  be such that ~ ( T )  is a closed subspace of ~. Then 

~(r*)='[~(r)] 

Proof Let x* = LX* + SX* ~ ~(T*) .  Then 

x* = T 'y*  

for some y* ~ ff(o23). Now 

x ~  ~ ( r ) =  x*(x): ~y*(x): y*r(x) : o  

= x * ~  l [ ~ c ( r ) ]  

Hence 

~(r*)c ~[~(r)] 

Conversely, let x* E • [~ Define f: ~ ( T ) ~ C  by 

f ( y ) = x * ( x )  

where 

y = T x  

and x is chosen by Corollary 3.3.1 to satisfy 

Jlxll~ g ll yll 

If there is more than one such x, then since x*~  • [%(T)], x*(x)  has the 
same value for each such x and, therefore, f is well defined and it is evident 
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that it is additive, It now follows that 

I1 f (y) l l  = IIx*(x)ll ~ K II x*llll y II 

Thus f is bounded in @(T) and hence by Proposition 3.2 can be extended to 
all ~.  The extension F belongs to @(~) and 

x *  = T * F  

Hence • [gL(T)] C ~(T*)  and our proof is complete. �9 
When T is a linear operator between two Hilbert spaces ~ ~ and ~2 ,  7"* 

according to our definition is a map between 9C 2 and ~ l ,  the duals of ~'2 
and ~ l ,  respectively. Since in the case of a Hilbert space the dual is 
naturally isomorphic to the original space, one can regard T* as a map from 
~2  to ~ l  and then our orthogonal complement • g of a subset g of ~ l  (or 

~_~ ) becomes identical with the usual Hilbert space orthogonal complement 
�9 Further in that case it is easy to see that 

T * ~  r 

With all these identifications ~ (T*)  is a subspace of 9C I and 9L(T*) a 
subspace of 5(;2. By taking the orthogonal complement of the equality in 
Proposition 4.1 one gets the equality 

= 

where the bar above ~ ( T )  denotes its closure. Replacing T by T* and by 
using 

Z ~ T 

one gets two further equalities: 

=  c(r) 

and 

All these properties are very useful in the study of linear transformations�9 
However, when T is merely additive and continuous, none of the three 
relations thus obtained are valid and the situation is much more com- 
plicated. One source of trouble is that if g is a subset of @(%), • g defined 
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by 

"S  = {x: x~ 9(;, x*(x)=0 ,  Vx* ~ g) 

is not, in general, a subspace of 9(;. We have investigated the relation 
between g(T*)  and ~)L(T)" in a particular example of the simple case 
where %1 = 9g and 9(; 2 = C ,  so that T ~  @(%). This is the subject matter of 
our longest proposition, but before we can assert it we need a new 
definition. 

Definition 4.3. Let TE d~(%, ~). T is said to be balanced if 

lILT II = liST II 

We can now state and prove our next proposition. 

Proposition 4. 3. Let 9g be a complex Hilbert space. Let T be a balanced 
element of ~(9C). Let T* be the adjoint of T. Then 

" [ ~ ( r ) ]  = ~ ( r * )  

Proof Since in the proof of Proposition 4.2 the inclusion 

~(T*)  C l [ ~ ( r ) ]  

was obtained without using the property that g ( T )  is dosed, it is valid even 
in this case and it is enough to prove the inverse inclusion: 

~ [ ~ ( r ) ]  C ~(T*) .  

Remembering that T is balanced, we can use Riesz representation theorem 
to write T in the form 

T =  r ( ( ,  u ) + ( v ,  >) 

where rER,  u, vE %, and 

l lul l=l lvl l=l  

Suppose first that u and v are linearly independent and 

= Span{u, v) 

Let P be the orthogonal projection on ~ We first prove that 

h E g L ( T ) ~ P h = a u - ~ v  for some a E C  
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To do this suppose h E 63L(T) and Ph = au +flv; then 

(~u + ~v, u) + (v, au +/~v) =0 

= 

Let 

and 

( v , u ) = a + i b  

a+ f i=c+ id 

Then equation (1) can be written 

(c + id)+ (c - i d ) ( a  + ib)=0 

c(l + a)+ db =0  

cb + d ( 1 - a ) = O  

c = d = O  

unless 

but 

a 2 + b 2 = l  

a 2 + b 2 =[ (v ,  u)[ 2 < ( u , u ) ( v , v ) =  1 

We have thus proved that 

Now let 

that is, 

for all h such that 

x,---Lx +Sx~l[~(r)]  

Lx(h)+Sx(h)=O 

~ = 0  

Pian and Sharma 

(1) 



Calculus on Complex Banach Spaces 

We can write x* as 

x*=<, x'>+ <x ~, > 

and we shall prove that 

and 

Let 

and 

p x  I = X I 

p x  2 - - _  X 2 

yl = ( 1 -  e)x I 

y2=(1-P)x2 

Clearlyy I and y~ belong to ~_L and therefore to 9L(T). Now 

x*(y'):o 

= (y',y')+(y2, y')=O 

and 

Hence 

We can now write 

and 

= (y2, y')--(y2, y2)=O 

(yl,yl)+(y2, y2>=O 

y 1 = y 2 = 0  

xl=a,u+B,v 

x 2 = a 2 u  + f l2v  

119 
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are linearly independent, then 

x*E I[~C(T)]= x * ~ ( T  *) 

that is, 

" [ ~ ( r ) ]  c ~ ( r * )  

Finally suppose that u and v are linearly dependent, that is, 

D=/3U 

11/311--1 

Let 

121 

where 

and 

with 

We can, therefore, write 

X I = "~1 u 

x2 = g2u 

Y2/(5,)=B 

x* = T*g 

W=Span(u}  

and let ~ be the orthogonal projection on qJ. A calculation similar to that in 
the preceding case shows that if h E %(T) ,  then ~h can be written as 

~h = au 

where a satisfies 

a + / 3 f f = 0  

and that if x* E "  [~ then x* has the representation 

x*=<,x'>+<x2, > 
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where gE ~(C,C) is given by 

g ( c )  = ~lc  

Pian and Sharma 

Since E(C, C ) c  ~(C, C), the proof of our proposition is complete. �9 

5. THE LAGRANGE MULTIPLIER THEOREM 

Our main aim in this section is to prove a generalization of the 
Lagrange multiplier theorem by using the calculus of Sharma and Rebelo 
(1975). We first recall the basic definition of Sharma and Rebelo (1975) on 
semidifferentiability and then we prove a series of results culminating in our 
generalization of the Lagrange multiplier theorem. 

Definition 5.1. A function f from a Banach space % to a Banach space 
is said to be semidifferentiable at a point x E %, if there exists a function 

fx(S)~ ~(%, ~ ) ~ $ ~ ( % ,  ~)  such that 

IIf(x + u ) -  f(x)-/,'s>(.)ll/llult=O 
Ilull~0 

The function f~r if it exists, is called the semiderivative of f at x. If the 
function f is semidifferentiable at each point in %, it is said to be 
semidifferentiable in % and the rule which assigns to each point x E % the 
semiderivative of f at that point is called the semiderivative of f in % and is 
denoted by f(s). 

Proposition 5.1. (The mean value theorem). Let f: % ~ ~ be semidif- 
ferentiable in a neighborhood o-~ of x0E%. Let h E %  be such that 
x o + sh(O <<- s <<- 1) E 621,. Then 

IIf(xo+h)-f(xo)ll< sup fxo+Oh (s) Ilhll 
0<0<1 

Proof. We can regard ~ as a real space. Assume first that 

y = f ( x o + h ) -  f ( x o )  

is a nonzero vector in ~. We define a real function g on the real subspace 
Span(y) by 

g(ry) = rllyll, r E R  
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Clearly g is linear and 

Ilgll = ] 

Hence by the Hahn-Banach  theorem there exists a real linear continuous 
function G on ~ such that G extends g and 

IIGII=I 

Now define the real function p in ~ by 

p(s)=G(f(xo+sh)) ,  

Then 

0 ~ s ~ l  

o'(s) = ~ [o ( s+  k ) -  p (s ) ] /k  

= lira G([f(x o + sh + kh) -  f ( x  o + sh)]/k) 
k ~ O  

=Glim ([f(xo + sh+ kh ) -  f(Xo +Sh)]/k } 
k ~ O  

= a (Lo+~h~s>(h)) 

By the mean value theorem for real functions we have 

p ( ] ) -  ~(o)= p'(0), o < 0 < 1  

that is, 

Hence 

In the case where 

a( f (~o  + h ) -  f(xo))--  a (Lo+~h(~)(h) ) 

Io(/(Xo + h ) -  f(Xo))[~ilOli {fxo+Oh `s) iihll 

= I]f(Xo + h)- /(Xo)l]  ~ Lo+Oh <s) Hi h It 

0 < 0 < 1  

f (x  o + h ) -  f(xo) = 0  

the proposition is obviously true. Our proof is now complete. 
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Definition 5.2. Let T be a continuously semidifferentiable function 
from an open set @ in a Banach space % into a Banach space ~ that is, T ~) 
is defined on the whole of | and is continuous. Let XoE ~ be such that 
Txor is surjective, then the point x 0 is said to be a regular point of the 
function T. 

We now come to the most important new result of this work. This not 
only generalizes further the generalized inverse function theorem to the case 
where only semidifferentiability may be available, but also provides a new 
proof of the standard theorem, that is, for the differentiable case. 

Proposition 5.2. (The generalized inverse function theorem). Let x 0 be a 
regular point of a semidifferentiable map T from a Banach space ~ into a 
Banach space ~. Let T(x0)=  Y0. Then there is a neighborhood ~yo of the 
point Y0 and a real number K such that the equation 

T ( x ) =  y 

has a solution for every y ~  ~',,o. and the solution satisfies 

ll x - xo ll ~ K ll y - yo ll 

Proof. We use the open mapping theorem to construct a sequence (h,,), 
such that T(x  o + h , )  converges t o y  fo ry  close t o y  0. By hypothesis Txo r is 
surjective. Hence there exists an h l such that 

Lo(S~( h , ) =  y - T( xo)  

and by the open mapping theorem h t can be chosen in such a way that 

IIh~ll<~ g l l  y -  Yoll 

Let z 2 be the solution of 

T (s)t .  ~= _ T ( x o + h  ) .,% k ~ 2 !  Y I 

such that 

II z2 II ~ KII T~or162 z 2)11 

Let zl = h I and let h2 = z2 + h I, then 

lib2- h,ll<- KII 



Calculus on Complex Banach Spaces 

We then inductively define z.  to be the solution of 

77 (S)(z ) =  y - T ( x o + h , , _ j )  x o \ n 

such that 

where 

II h,,- h,,_, II ~ K[I h.  - h.,_ ,)ll 

125 

Let t E[0. 1] and let 

and 

and 

h, = th,,_ t + ( 1 -  t )h , ,_  2 

By the mean value inequality we obtain 

Jl Txo"(h~- h,)I-< II h, II 

and 

T,.o'S)(h,, - h , , _ , ) = - [ T ( x  o + h . _ , ) -  T ( x  o + h,,_2) 

--7" Cs)( ~, __ h,,_2) ] for n > 2 .  

ht2= thl 

for n > 2 

sup T ~s) _ T,.o~S) 
t~]o,l[ II .,o+h,~ 

] ] T , . o ( S ' ( h , , - h . _ , ) l l < ~ l l h . _ , - h . l ~ l l  sup T ,s~_ T ,s)l f o r n > 2 .  
" t • ] 0 , 1 [  x ~  x ~  

Since T~.o(S) is cont inuous at x 0, there exists a real number  8 > 0  such that 

II x - x o II < 8 ~ II Zx ~) - Z.~,, ~ II < I / 2 K  

h n = z,~ + h n _ I 

We now subtract  the equation for Txo~S~(z ~_ I) from that for Txo~S~(z ~) to get 

Lo~S'(h2-h,)---[T(xo+h,)-T(xo)-Lo~S'(h~)] f o r n = 2  



Now if we take y close enough to Y0, we can assure that 

Hhtll< Kl[ y -  yo[[<~6/2 

Then 

and 

provided 

but 

if 

Now 

ilh2-h,il~KllTxo'S'(h2-h,)ll~Ktlh,li sup Txo+h,'S'--T~o C'' 
t~]o,  t[ 

~<(I/2)llh~ 11 

IIh,,- h._ ~ ll-< ~11Tx0"'(h~ h~ 

<~gllh._1-h,,_2[I sup T ~ ' ~ - Z  ~1 
tE]0. I[ x~ Xo 

<(l/2)llh,,_~-h,_zll 
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IIh, ll~tllh~_tll+(l-t)llh._2[l<8 

II h.  I1 < 8 for all n 

IIh2ll~tlh~ll+llh2- h~lt~llhlll+(1/2)llh~l[ 

~<2tlhjt1<8 

and, by induction, 

IIh,ll~llh~ll+llh2-h~ll+ "" + [ I h , -  h~_~ll 

~<[1+(1 /2 )+  . - .  +(l/2")]Jlh,I}<2flh,ll<~ for all n 
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and in getting the preceding inequality, we have used 

IPh,-h,_jll<-(1/2)llh,,_,-h,_2ll<~(1/Z")llh,ll for all n 

This shows that the sequence (h,)  is a Cauchy sequence which must 
converge to some vector h, and 

z n = h n - - h n _  I 

converges to 0. Then from the equation 

T~o(S)(z,,)= y -  T(xo + h,_,)  

it follows that, in the limit 

y = T(x o + h) 

Also 

II h II ~211 h, II ~<2K II y - go II 

and the proof of our proposition is finally complete. 
We note here that the kernel of an additive map is not necessarily a 

subspace and, therefore, the proof of the standard theorem (see, for exam- 
ple, Luenberger, 1969) cannot be adapted to be applicable to our case; on 
the other hand our proof applies equally to the standard case. 

Our next proposition completes the path leading to our generalization 
of the Lagrange multiplier theorem, but we need a definition to state our 
proposition. 

Definition 5.3. Let T ~ ( % , ~ ) .  Let ~ be a subspace of %; then T is 
said to be strongly unbalanced on ~ if I[LT(h)l[=llST(h)l[ if and only if 
h C K e r T n  ~. 

Proposition 5.3. Let % be a complex Banach space. Let ~ be an open 
set containing x 0. Let f be a functional on % continuously semidifferentia- 
ble on ~. and let H be a mapping from % to another complex Banach space 

with the following properties: 
(i) f (x )  restricted to the set {x: H(x) = 0} has an extremum at x o. 

(ii) f~o (s) is strongly unbalanced on KerHx0 (') 
(iii) H is continuously semidifferentiable on ~ and KerHso(~) is a 
subspace. 
(iv) x o is a regular point of both H and f.  



Then 

for all h satisfying 

Lo(S)(h)=0 

Proof. We define a mapping T: % ~ C @ o2j by 

V(x)=(f(x),H(x)) 

Suppose contrary to our assertion there exists an h E 5'2(; such that 

Hxo(S) ( h ) = 0 

but 
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From the postulated properties of f and H it is now easy to verify that 

T~o (s) = (  f~o (s), H~o (s)) 

is a surjective map from % to C @o~. Then by Proposition 5.2 there exists a 
neighborhood CVof T(xo) such that the equation 

V(x): y 

has a solution for every y ~  'V. In particular one can choose a positive real 
number r such that 

T(x)=( f (Xo)+-~ ,O)  

has a solution for every ~ < r. This contradicts that I f(Xo)[ is an extreme 
value of I f I- This completes the proof. �9 

We would remark that the requirements that f.~o (') be strongly unbal- 
anced and that KerHx0(s) be a subspace are unnecessary when f is a real 
functional on a complex Banach space and furthermore the requirement 
that f '  be regular is unnecessary when f is a real functional on a real Banach 
space. All these requirements are to assure the surjectivity of the semideriva- 
tive or the derivative and all real functionals are either zero or surjective. 
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We would remark further that the main assertion of Proposition 5.3 can 
be restated as 

We have now proved everything necessary to be able to assert our main 
result without any further proof. 

Proposition 5.4. (The generalized Lagrange multiplier theorem). Let f 
and H be as in Proposition 5.3. Then there exists an element hE C(~)  such 
that the functional 

f~o (~) + 7~ o H~o~) : 0  

We finally remark that the same method will yield the corresponding 
results for the extrema of real functionals on real or complex Banach spaces. 
Physical applications of these results are being published elsewhere (Pian 
and Sharma, 1981). 

6. APPLICATIONS TO PHYSICS 

Sharma and Rebelo (1975) have discussed the importance of optimi- 
zation in science and industry. It is well known that a good proportion of 
laws of physics can be obtained by a variational principle and a variational 
principle is often the only means of placing bounds on errors in approxi- 
mate calculations of physical quantities. The discovery of Frechet calculus 
led to a substantial simplification of the calculus of variations and it is now 
possible to provide short, rigorous, and illuminating proofs of classical 
results which were originally established by methods which were not only a 
little obscure but also lacked rigor. Theoretical physicists have so far been 
unable to benefit from this development because the Frechet calculus could 
not be used for optimization of functionals and functions which are partly 
semilinear and semilinearity is a necessary attribute of an inner product on 
a complex Hilbert space which is the home of much of theoretical physics at 
the present time. Physicists had to rely on classical methods which included 
such meaningless stratagems as varying a function and its complex con- 
jugate independently of each other. The new calculus makes this unneces- 
sary and brings the modem development into a form which can be used for 
optimization of functionals and functions defined on a complex Hilbert 
space. The new calculus has been used (Sharma and Rebelo, 1975) to obtain 
bounds on a variety of quantum mechanical sums; these sums include many 
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of great practical importance such as the second-order energies of stationary 
systems, atomic polarizabilities, and so on. Fonte (1979) has used the 
calculus to provide a rigorous modem proof of the Ritz-Rayleigh bounds 
on eigenvalues of a Hamiltonian operator in quantum mechanics. The new 
calculus has also been used to provide simple, rigorous proofs of Kato's 
lemma on Schwinger's variational principle for the scattering phase (Pian 
and Sharma, 1980), of a generalized Brillouin theorem (Pian and Sharma, 
1981) and of the Hartree-Fock equations for two electron atoms (Pian, 
1981). Further work is in progress and will be reported in due course. 
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